Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching
نویسندگان
چکیده
We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.
منابع مشابه
Synthesis and characterization of α-Alumina membrane supports and the binding effect of Poly (Vinyl Alcohol)
Ceramic Ultrafiltration membranes are considered as an alternative for the treatment of both stable water-in-oil and oil-in-water emulsions proved to be more effective in comparison with other conventional techniques. In this study, symmetric macro-porous ceramic membranes are prepared through dry pressing of α-alumina powder and the addition of various binders including Poly (vinyl alcohol). T...
متن کاملSynthesis and characterization of α-Alumina membrane supports and the binding effect of Poly (Vinyl Alcohol)
Ceramic Ultrafiltration membranes are considered as an alternative for the treatment of both stable water-in-oil and oil-in-water emulsions proved to be more effective in comparison with other conventional techniques. In this study, symmetric macro-porous ceramic membranes are prepared through dry pressing of α-alumina powder and the addition of various binders including Poly (vinyl alcohol). T...
متن کاملPreparation and characterization of MWCNT-COOH/PVC ultrafiltration membranes to use in water treatment
Polyvinyl chloride (PVC) membranes containing pristine and modified multiwall carbon nanotube (MWCNT) were prepared and characterized. MWCNT was modified in order to achieve well-dispersion within the membranes. The results of FTIR analysis revealed that MWCNT was successfully carboxylated. The FESEM images indicated that the number of pores on the surface of membranes increased at the presence...
متن کاملPolysulfone/ Carbon Nanotubes Asymmetric Nanocomposite Membranes: Effect of Nanotubes Surface Modification on Morphology and Water Permeability
Polysulfone/carbon nanotubes (PSF/CNTs) nanocomposite membrane was prepared via phase inversion induced by immersion precipitation technique. In addition, the surface of the CNTs were functionalized by polar carboxylic and amine groups to improve the interaction between the CNTs and the polymer matrix. For this purpose, the neat CNTs were chemically treated using sulfuric acid/ nitric acid (H2S...
متن کاملActivator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes
This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal ep...
متن کامل